Invariant Measures of Stochastic Perturbations of Dynamical Systems Using Fourier Approximations

نویسندگان

  • Md. Shafiqul Islam
  • Pawel Góra
چکیده

Invariant measures of dynamical systems play important role in understanding the chaotic nature of dynamical systems. Let (I,B, λ) be a normalized measure space, where I = [0, 1], B is a Borel σ-algebra of subsets of I , λ Lebesgue measure in (I,B). Let τ : (I,B, λ) → (I,B, λ) be a deterministic dynamical system. The Frobenius-Perron operator Pτ of τ is a linear operator Pτ : L (I,B)→ L(I,B) defined by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertain Dynamical Systems Defined by Pseudomeasures

This paper deals with uncertain dynamical systems in which predictions about the future state of a system are assessed by so called pseudomeasures. Two special cases are stochastic dynamical systems, where the pseudomeasure is the conventional probability measure, and fuzzy dynamical systems in which the pseudomeasure is a so called possibility measure. New results about possibilistic systems a...

متن کامل

A PDE approach to finite time approximations in Ergodic Theory

For dynamical systems defined by vector fields over a compact invariant set, we introduce a new class of approximated first integrals based on finite-time averages and satisfying an explicit first order partial differential equation. Referring to the PDE framework, we detect their viscosity robustness with respect to stochastic perturbations of the vector field. We formulate this approximating ...

متن کامل

Approximation of invariant foliations for stochastic dynamical systems ∗

Invariant foliations are geometric structures for describing and understanding the qualitative behaviors of nonlinear dynamical systems. For stochastic dynamical systems, however, these geometric structures themselves are complicated random sets. Thus it is desirable to have some techniques to approximate random invariant foliations. In this paper, invariant foliations are approximated for dyna...

متن کامل

ha o - dy n / 96 07 02 0 v 1 1 A ug 1 99 6 Uncertain dynamical systems defined by pseudomeasures Andreas Hamm Fachbereich Physik Universität GH Essen 45117 Essen Germany

This paper deals with uncertain dynamical systems in which predictions about the future state of a system are assessed by so called pseudomeasures. Two special cases are stochastic dynamical systems, where the pseudomeasure is the conventional probability measure, and fuzzy dynamical systems in which the pseudomeasure is a so called possibility measure. New results about possibilistic systems a...

متن کامل

Intrinsic Ergodicity of Fibered Perturbations of Products of Chaotic Smooth Interval Maps

We consider small bered perturbations of direct products of chaotic smooth interval maps. We prove that these multi-dimensional systems have a non-zero and nite number of invariant and ergodic probability measures with maximal entropy. We note that these dynamical systems are neither linear nor expansive. The proof uses a suitable generalization of Hofbauer's Markov diagram developped in 6] whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011